Eighth Grade

  • The performance expectations in the topic Chemical Reactions help students to formulate an answer to the questions: “What happens when new materials are formed? What stays the same and what changes?” by building understanding of what occurs at the atomic and molecular scale during chemical reactions. “How can particles combine to produce a substance with different properties? How does thermal energy affect particles?” by building understanding of what occurs at the atomic and molecular scale.  By the end of middle school, students will be able to provide molecular level accounts to explain that chemical reactions involve regrouping of atoms to form new substances, and that atoms rearrange during chemical reactions. Students are also able to apply an understanding of the design and the process of optimization in engineering to chemical reaction systems.  By the end of middle school, students will also be able to apply understanding that pure substances have characteristic properties and are made from a single type of atom or molecule. They will be able to provide molecular level accounts to explain states of matters and changes between states.

    The performance expectations in the topic Energy help students formulate an answer to the question, “How can energy be transferred from one object or system to another?” At the middle school level, the PS3 Disciplinary Core Idea from the NRC Framework is broken down into four sub-core ideas: Definitions of Energy, Conservation of Energy and Energy Transfer, the Relationship between Energy and Forces, and Energy in Chemical Process and Everyday Life. Students develop their understanding of important qualitative ideas about energy including that the interactions of objects can be explained and predicted using the concept of transfer of energy from one object or system of objects to another, and that that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Students understand that objects that are moving have kinetic energy and that objects may also contain stored (potential) energy, depending on their relative positions. Students will also come to know the difference between energy and temperature, and begin to develop an understanding of the relationship between force and energy. Students are also able to apply an understanding of design to the process of energy transfer.

    The performance expectations in the topic Forces and Interactions focus on helping students understand ideas related to why some objects will keep moving, why objects fall to the ground and why some materials are attracted to each other while others are not. Students answer the question, “How can one describe physical interactions between objects and within systems of objects?” At the middle school level, the PS2 Disciplinary Core Idea from the NRC Framework is broken down into two sub-ideas: Forces and Motion and Types of interactions. By the end of September 2017 ©2013 Achieve, Inc. All rights reserved. 1 of 32 middle school, students will be able to apply Newton’s Third Law of Motion to relate forces to explain the motion of objects. Students also apply ideas about gravitational, electrical, and magnetic forces to explain a variety of phenomena including beginning ideas about why some materials attract each other while other repel. In particular, students will develop understanding that gravitational interactions are always attractive but that electrical and magnetic forces can be both attractive and negative. Students also develop ideas that objects can exert forces on each other even though the objects are not in contact, through fields. Students are also able to apply an engineering practice and concept to solve a problem caused when objects collide.

    The performance expectations in the topic Waves and Electromagnetic Radiation help students formulate an answer to the question, “What are the characteristic properties of waves and how can they be used?” At the middle school level, the PS4 Disciplinary Core Idea from the NRC Framework is broken down into Wave Properties, Electromagnetic Radiation, and Information Technologies and Instrumentation. Students are able to describe and predict characteristic properties and behaviors of waves when the waves interact with matter. Students can apply an understanding of waves as a means to send digital information.

     - NGSS 2017

If you are having trouble viewing the document, you may download the document.